
Technical Notes 2053 

eg 
-~ the I 

.~_ transient Orcetz 

0.001 
0.0001 0.001 0.01 0 1 

D;rnensionless distance (X + )  

FIG. 4. Thermal start-up times for the transient Graetz and 
the combined thermal momentum start-up problems. 

the results presented in Fig. 4, equations (12) and (13) are 
proposed for estimating the start-up time in the transient 
Graetz and the combined thermal momentum problems, 
respectively : 

transient Graetz 

Foo~ = 1.2(X+)3'4; (12) 

cornbined thermal momentum 

fo09~ = 1.5(X+) ~ ~ (13) 

4. CONCLUSIONS 

A solution method is outlined for the combined thermal- 
momentum start-up problem. By assuming the fluid prop- 
erties to be constant, the momentum equation is decoupled 
from the energy equation. The energy equation is expressed 
in a finite difference form and solved numerically with the 
velocity profile calculated from the analytical solution of  the 
momentum equation. Results indicate that the start-up time 
for the combined thermal-momentum start-up problem is 
much larger than that for the transient Graetz problem. 
Simple correlations are proposed for the start-up time for 
the two transient laminar heat transfer problems. 
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THE DEPENDENCE of  the moisture diffusivity D(u, T) on the 
moisture content u and on the temperature T is important 
not only in technical applications of  porous materials, but it 
can also yield valuable information on the mechanism of  
the unsaturated water flow in capillary-porous media. It is 

usually assumed [1] that in the transport of the liquid phase 
the surface tension o- plays the role of  the driving force 
and the viscosity ~7 of the liquid is responsible for energy 
dissipation that leads to a quasi-stationary character of water 
flow. Dimensional analysis yields the following expression 
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NOMENCLATURE 

D(u, T) 
f (r)  
F(r) 
r 

r(u) 

Q(u) 
R(u) 
Ro(u) 
l 

T 

moisture diffusivity [m-' s -  '] 
distribution curve of  pore radii [m-~] 
integrated distribution function of pore radii 
radius of  the pore [m] 
largest radius of  the pore filled by water at 
moisture content u [m] 
correction factor, equation (5) 
geometrical factor [m] 
geometrical factor [m] 
time [s] 
temperature [°C] 

u moisture content 
u(x) moisture distribution along the sample 
x(u) inverse function to u(x) [m] 
W(T) function characterizing properties of water 

[m s-'1. 

Greek symbols 
~/(T) dynamical viscosity [m- ~ kg s -  t] 
0 wetting angle 
a(T) surface tension [kg s-Z] 
z(u) tortuosity. 

for the moisture diffusivity D(u, T) : 

O(u, T) = W(T)R(u), W(T) = a(T) cos 0/4~/(T) (1) 

where 0 is the wetting angle. The moisture diffusivity D is 
factorized into a product of  two functions: W(T), char- 
acterizing the transport properties of  water, and the geo- 
metrical factor R(u) characterizing the system of  pores which 
is connected with the pore distribution function f (r)  and 
with the tortuosity r(u) by the relation 

R(u) = Ro(U)/~-'(u) (2) 
where 

1 I '(m 
Ro(u) = r'-(u)f(r(u)) Jo r'-f(r) dr. (3) 

This formula was derived [1, 2] under the assumption that 
pores of increasing size are consecutively filled up during 
water intake. More specifically, it is assumed that at moisture 
content u pores of  radii 0 < r < r(u) are filled, while those 
with radii r > r(u) are empty. Obviously, the function r(u) is 
increasing and it is connected with f (r)  by the relation 

u = u~F(r(u)), F(r) = j l  r f (r ' )  dr" (4) 

where u~ is the highest possible value of  u that corresponds 
to saturation, and the function F(r) is a primitive function 
of  f(r).  The pore distribution function f (r )  is normalized to 
unity: F(cc) = 1. 

The aim of  the present work was to verify (i) the tem- 
perature dependence of  D as given by equation (1), and (ii) 
the functional form, equation (3), of  the geometrical factor 
R(u). 

All the measurements were carried out on samples in the 
form of  rods (300 mm long with cross-section 40 x 10 mm) 
made of ceramics (soft bisque composed of  35% A1203, 
44% kaoline and 21% feldspar). Due to the low baking 
temperature (700°C) most of  the pores remained open. This 
material is particularly suitable for our purposes because it is 
perfectly homogeneous and it has only small pores, which 
ensures that the water transport is not influenced by gravi- 
tation. We determined the moisture diffusivity D by using the 
Matano method [3] for all accessible values of  the moisture 
content u, i.e. for 0 < u < u,, u, = 0.194 corresponds to satu- 
ration. The samples were held in the horizontal position 
during measurements in order to minimize the gravitational 
effects. One end of the sample was fed by water, its surfaces 
were carefully insulated by water- and vapour-tight epoxy 
resin, and the other end was exposed to dry air. The moisture 
distribution u(x) along the sample was determined by the 
gravimetric method with high accuracy. The samples were 
thermostatically controlled during all measurements in order 
to keep constant temperature and humidity of  the ambient 
air. The measurements were carried out at four temperatures, 
T = 4, 27, 40 and 60°C. A typical moisture distribution u(x) 
along the sample is shown in Fig. I. 
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FIG. 1. Moisture distribution along the sample at T = 4~C 
and t = 432 900 s. The experimental values are denoted by 
crosses and their fit by a cubic polynomial is shown by the 

full line. 

The method of Matano [3] is based on the solution of the 
non-linear diffusion equation via Boltzmann's trans- 
formation [4]. It gives the moisture diffusixity in the form 

D(.,  r )  x '( .)  [" x(u') d,," (5) 
2t J"0 

where x(u) is the inverse function to u(x). and t the time 
needed to reach the moisture distribution u(xl, provided that 
u(x) = u0 for all x at t = 0. To evaluate our experimental data 
we approximated the function x(u) by a cubic polynomial the 
coefficients of  which were found by a least-square fit. The 
moisture diffusivity D was then calculated using equation 
(5). The resulting curves are shown in Fig. 2. 

The geometrical factor R(u) is calculated from equation 
(1). We employed the tabulated values of  171T) [5] and a(T) 
[61 and for simplicity we set cos 0 = 1 for all temperatures. 
It is a good approximation since the wetting angle of water 
on silicates is close to 0 ° and the change of a(T) between 4 
and 60°C is only by a factor of  0.883 [61. The resulting curves 
are almost identical and are shown in Fig. 3. Note that R(u) 
is a polynomial of  sixth degree in u if x(u) is approximated 
by a cubic polynomial. 

We determined f (r)  experimentally using the high-press- 
ure mercury porosimeter Carlo Erba AG 60. The measure- 
ments were carried out at pressures ranging from 0.1 to 100 
MPa, which corresponds to pore radii between 7500 and 7.5 
nm. The integrated pore distribution function F(r) is shown 
in Fig. 4. We calculated the geometrical factor Ro(u ) accord- 
ing to equation (3) using the measured pore distribution 
function f (r)  (dashed line in Fig. 3). As no smoothing of  
experimental data has been carried out and we have used 
the pieeewise linear interpolation for the function F(r), the 
calculated geometrical factor Ro(u) shows several jumps. 
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EIG. 2. The dependence of the moisture diffusivity D(u, T) 
on the moisture content u at temperatures T = 4, 27.40 and 
60 C. The lowest curve corresponds to 4:C. the highest one 

to 60 C .  

Its general shape however, closely resembles that of  R(u), 
calculated from D(u, T). It differs by a correction factor 

Q(u) = Ro(u).R(u) = r2(ll) COS 0 (6) 

,ahich is almost constant for all values of  the moisture 
content. Note that independence of Q(u) on u corresponds 
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FI6. 3. The geometrical factors R(u) calculated from equa- 
tion ( 1 ) at four different temperatures (full lines). Also shown 
is the geometrical factor R0(u) calculated according to equa- 
tion (21 from the experimentally determined pore dis- 
tribution function f (r)  (dashed line), and Ro(u)/Q(u) (dotted 

line). 
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Experimentally determined integrated pore dis- 
tribution function F(r). 

to a constant value of tortuosity in the ~hole range of  pore 
radii. By means of a least-square fit we have found O = 20.97, 
which seems to be a reasonable value, because for cos 0 = 1 
it yields tortuosity : = 4.58. There is. of  course, some uncer- 
tainty in the value of  the wetting angle. For example, for 
0 = 40: the tortuosity is r = 4.01. 

We have studied the temperature dependence of the moist- 
ure diffusivity D and the functional form of its dependence 
on the moisture content. The main results of  the present 
work may be summarized as follows. 

(1) The temperature dependence of  D(u. T) is determined 
with a good accuracy by the temperature dependence of 
the surface tension o-(T) and viscosity' q(T) according to 
equation ( 1 ). 

(2) The dependence of  D(u, T) on the moisture content u 
is given by the geometrical factor R(u). which is directIy 
connected with the distribution f u n c t i o n / ( r )  of pore radii 
and with the tortuosity r(u). 

(3) Our results confirm the assumptions on the mechanism 
of water transport in the liquid phase in capillary-porous 
media. 
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